Methane pyrolysis technologies for turquoise hydrogen production

Methods

AC Graphite Electrode Plasma Arc
- **Process shown**: Plenesys
- **Hydrogen content at reactor outlet**: ~98% using recycle loop (70 to 80% single pass conversion)
- **Carbon production**: Solid carbon
- **Catalyst required**: No
- **Heating mechanism**: Hydrogen gas AC electrical plasma
- **Reactor temperature**: 1,500 to 1,800 °C
- **Reactor pressure**: Close to atmospheric pressure
- **Hydrogen, unreacted methane and solid carbon**
- **Quench water spray**

Metal Electrode Plasma Arc
- **Process shown**: Based on the Hüls process
- **Hydrogen content at reactor outlet**: Potentially >95% hydrogen on single pass
- **Carbon production**: Solid carbon
- **Catalyst required**: No
- **Heating mechanism**: High temperature plasma arc (20,000 °C)
- **Reactor temperature**: Gases in the range of 1,200 to 1,500 °C
- **Reactor pressure**: Close to atmospheric pressure
- **Hydrogen, unreacted methane and solid carbon**
- **Vortex chamber**

Microwave Plasma
- **Process shown**: Transform Materials
- **Hydrogen content at reactor outlet**: 86% hydrogen, 12% acetylene
- **Carbon production**: Solid carbon
- **Catalyst required**: No
- **Heating mechanism**: Microwave plasma
- **Reactor temperature**: 1,200 to 1,500 °C
- **Reactor pressure**: Close to atmospheric pressure
- **Hydrogen, unreacted methane, CO₂ and solid carbon**
- **Combustion flue gases**

Pulsed Methane Pyrolysis (PMP)
- **Process shown**: Ekona Power
- **Hydrogen content at reactor outlet**: 70 to 80%
- **Carbon production**: Solid carbon & CO₂
- **Catalyst required**: No
- **Heating mechanism**: Partial combustion and fired heater
- **Reactor temperature**: 1,200 to 1,500 °C
- **Reactor pressure**: Pressure cycles up to 20 bar with each pulse at approximately 1 Hz

Table Summary

<table>
<thead>
<tr>
<th>Method</th>
<th>Process shown</th>
<th>Hydrogen content at reactor outlet</th>
<th>Hydrogen content at reactor outlet</th>
<th>Carbon production</th>
<th>Catalyst required</th>
<th>Heating mechanism</th>
<th>Reactor temperature</th>
<th>Reactor pressure</th>
<th>Hydrogen, unreacted methane and solid carbon</th>
<th>Quench water spray</th>
<th>Heating mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Graphite Electrode Plasma Arc</td>
<td>Plenesys</td>
<td>~98% using recycle loop (70 to 80% single pass conversion)</td>
<td>Hydrogen gas AC electrical plasma</td>
<td>Solid carbon</td>
<td>No</td>
<td>Hydrogen gas AC electrical plasma</td>
<td>1,500 to 1,800 °C</td>
<td>Close to atmospheric pressure</td>
<td>Hydrogen, unreacted methane and solid carbon</td>
<td>Quench water spray</td>
<td>Hydrogen gas AC electrical plasma</td>
</tr>
<tr>
<td>Metal Electrode Plasma Arc</td>
<td>Based on the Hüls process</td>
<td>Potentially >95% hydrogen on single pass</td>
<td>Solid carbon</td>
<td>Solid carbon</td>
<td>No</td>
<td>High temperature plasma arc (20,000 °C)</td>
<td>Gases in the range of 1,200 to 1,500 °C</td>
<td>Close to atmospheric pressure</td>
<td>Hydrogen, unreacted methane and solid carbon</td>
<td>Vortex chamber</td>
<td>High temperature plasma arc (20,000 °C)</td>
</tr>
<tr>
<td>Microwave Plasma</td>
<td>Transform Materials</td>
<td>86% hydrogen, 12% acetylene</td>
<td>Solid carbon</td>
<td>No</td>
<td>Microwave plasma</td>
<td>Microwave plasma</td>
<td>1,200 to 1,500 °C</td>
<td>Close to atmospheric pressure</td>
<td>Hydrogen, unreacted methane, CO₂ and solid carbon</td>
<td>Combustion flue gases</td>
<td>Microwave plasma</td>
</tr>
<tr>
<td>Pulsed Methane Pyrolysis (PMP)</td>
<td>Ekona Power</td>
<td>70 to 80%</td>
<td>Solid carbon & CO₂</td>
<td>No</td>
<td>Partial combustion and fired heater</td>
<td>Partial combustion and fired heater</td>
<td>1,200 to 1,500 °C</td>
<td>Pressure cycles up to 20 bar with each pulse at approximately 1 Hz</td>
<td>Hydrogen, unreacted methane, CO₂ and solid carbon</td>
<td>Hydrogen, unreacted methane, CO₂ and solid carbon</td>
<td>Partial combustion and fired heater</td>
</tr>
</tbody>
</table>